MULTI-MOMENT THEORY OF EQUILIBRIUM OF THICK PLATES

PMM Vol. 32, No. 2, 1968, pp. 344-352

Iu. A. GRUZDEV and V.K. PROKOPOV
(Leningrad)

(Received July 10, 1967)
One of the auhtors [1] gave a method of obtaining the differential equations and boundary conditions in problems of tension and bending of plates of constant thickness, on the basis of atilization of the minimum potential energy principle in combination with a symbolic writing of the solutions of the elasticity theory equations proposed by Lur's [2 to 4]. The differential equations and geometric boundary conditions were obtained therein in general form in a natural way; however, to obtain the force boundary conditions required carrying out a great deal of awkward computations, which increased sharply in each successive approximation; the question of obtaining such boundary conditions in general form remained open.

These difficulties are overcome below; integration of the variation in the strain potential energy of the plate, through the thickness of the plate, and introduction of multi-moment state of stress characteristics substantially simplified the analysis and permittet both the geometric and static boundary conditions to be obtained in general form.

The displacements of points of the plate may be expressed in terms of six functions of the x, y coordinates which are the displacements u_{0}, v_{0}, w_{0} of points of the middle plane of the plate and $u^{\prime}{ }_{0}, v^{\prime}{ }_{0}, w_{0}^{\prime}$ the 'rotations'. Lur'e gave these expressions in aymbolic form by using differentiation operators

$$
\begin{equation*}
\frac{\sin z D}{D}, \quad \cos z D, \quad D^{2}=\Delta=\partial_{1}^{2}+\partial_{3}^{2}, \quad \partial_{1}=\frac{\partial}{\partial x}, \quad \partial_{2}=\frac{\partial}{\partial y} \tag{0.1}
\end{equation*}
$$

Expanding the symbolic operators in power series we obtain

$$
\begin{align*}
& u= \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!} u_{0}-\frac{m}{2(m-2)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+2} \Delta^{n}}{(2 n+1)!} \partial_{1} \vartheta_{0}+ \\
&+ \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!} u_{0}-\frac{m}{4(m-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+3} \Delta^{n}}{(2 n+1)!(2 n+3)} \partial_{1} \vartheta_{0}{ }^{\prime} \tag{0.2}\\
& w= \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!} u_{0^{\prime}}+\frac{m}{2(m-2)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+3} \Delta^{n+1}}{(2 n+1)!(2 n+3)} \vartheta_{0}+ \\
&+\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!} w_{0}-\frac{m}{4(m-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+2} \Delta^{n}}{(2 n+1)!} \vartheta_{0}^{\prime} \\
& \hat{\theta}_{0}=\partial_{1} u_{0}+\partial_{2} v_{0}+u_{0^{\prime}}, \quad \theta_{0^{\prime}}=\partial_{1} u_{0}^{\prime}+\partial_{2} v_{0}-\Delta u_{0}
\end{align*}
$$

Here m is Poisson's ratio. The expression for v is obtained from u by replacing $u, u_{0}^{\prime}, \partial_{1}$ and $v_{0}, v_{0}^{\prime}, \partial_{2}$.

Following Lur'e, it is convenient to separate the problem of defomation of a thick
plate into two independent problems: the extension of the slab determined by the unknown functions $u_{0}, v_{0}, w_{0}^{\prime}$, and the bending of the plate described by the functions $u_{0}{ }^{0} v_{0}^{\prime} 0, w_{0}$.

Let p^{+}and p^{-}, respectively, denote the external force vectors per unit area of the endface planes $z=h, z=-h$. The projections of these forces on the x, y, z coordinate axes, which cause extension of the plate, are represented by

$$
\eta_{x}=p_{x}^{+}+p_{x}^{--}, \quad \eta_{y}=p_{y}^{+}+p_{y}^{-}, \quad \zeta=p_{z}^{+}-p_{z}^{-}
$$

and those which cause bending of the plate by Formulas

$$
t_{x}=p_{x}^{+}-p_{x}^{-}, \quad t_{y}=p_{y}^{+}--p_{y}^{-}, \quad p=p_{z}^{+} i_{1}+p_{z}^{-}
$$

The elementary work of all the external forces applied to the plate endfaces is determined by Expression

$$
\begin{equation*}
\delta A^{\prime}=\iint_{(\Omega)}\left(\mathrm{p}^{+} \cdot \delta \mathrm{u}^{+}+\mathrm{p}^{-} \cdot \delta \mathrm{u}^{-}\right) d x d y \tag{0.3}
\end{equation*}
$$

Here Ω is the plate plantiorm area, and u^{+}and u^{-}are displacement vectors of the endface planes of the plate, whose projections are evaluated by means of (0.2) with z replaced therein by h or $-h$, respectively.

1. Problem of extension of a plate. The variation of the specific strain potential energy of a plate is determined by Formula

$$
\begin{equation*}
\delta x=\sigma_{x} \delta \varepsilon_{x}+\sigma_{y} \delta \varepsilon_{y}+\sigma_{z} \delta \varepsilon_{z}+\tau_{x y} \delta \gamma_{x y}+\tau_{y z} \delta r_{y z}+\tau_{z x} \delta r_{z x} \tag{1.1}
\end{equation*}
$$

Let us express the strains in terms of the desired functions $u_{0}, v_{0} w_{0}^{\prime}$, for which we utilize the known relationships between the strains and the derivatives of the displacemente in addition to (0.2); we then have

$$
\begin{gather*}
\epsilon_{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!} \partial_{1} u_{0} \cdots \frac{m}{2(n!-2)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+2} \Delta^{n}}{(2 n+1)!} \partial_{1} \theta_{0} \\
\varepsilon_{z}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!}\left[u_{0}+\frac{m}{2(n t-2)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+2} \Delta^{n+1}}{(2 n+1)!} \theta_{0}\right. \tag{1,2}\\
\gamma_{x y}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!}\left(\partial_{2} u_{0}+\partial_{1} r_{0}\right)-\frac{m}{m-2} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+2}}{(2 n+1)!} \Delta^{n} \partial_{1} \partial_{z} \theta_{0} \\
T_{z x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!}\left(\partial_{1} u u_{0}^{0}-\Delta u_{0}\right)-\frac{m}{n-2} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n)!} \partial_{1} \theta_{0}
\end{gather*}
$$

The strains ε_{y} and $\gamma_{z y}$ are obtained from the atrains ε_{x} and $\gamma_{z x}$ by a cortesponding change of letters.

To derive the variations in the extension potential energy of a plate, we vary (1.2), and subatitute the result into (1.1), after which we integrate the obtained relationahip through the plate thickness. It is hence convenient to introduce the following static and hyper-static stress characteristics

$$
\begin{gather*}
T_{x}^{(n)}=-\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{\sigma_{x} z^{2 n} d z} \\
T_{y}^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{h} \sigma_{y} z^{2 n} d z, \quad S^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{h} \tau_{x y} z^{2 n d z} \tag{1.3}
\end{gather*}
$$

$$
\Gamma_{x}^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{h} \tau_{x x} z^{2 n+1} d z, \quad \Gamma_{v}^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{h} \tau_{y z}^{z^{2 n+1} d z}
$$

Hore $T_{x}{ }^{(0)}, T_{y}{ }^{(0)}$ are tensile, $S^{(0)}$ the shear forces, and $T_{x}{ }^{(n)}, T_{y}^{(n)}, S^{(n)}$ (for $n \geq 1$) their hyper-atatic analogs; $\Gamma_{x}{ }^{(0)}, \Gamma_{y}{ }^{(0)}$ are the bi-forces, $\Gamma_{x}{ }^{(n)}, \Gamma_{y}{ }^{(n)}($ for $n \geq 1)$ the higher order bi-forces.

Let as also introduce a notation for the integrals

$$
\begin{equation*}
\frac{(-)^{n}}{(2 n)!} j_{-h}^{\Xi_{z}} z^{2 n} d z=Z_{t}^{(n)} \tag{1.4}
\end{equation*}
$$

characterizing the diatribution of the atress σ_{x} through the plate thickness.
Therefore, by' using (1.3), (1.4) and (1.2), we obtain

$$
\begin{gather*}
\int_{-h}^{h} \sigma_{x} \delta \varepsilon_{x} d z=T_{x}{ }^{(0)} \partial_{1} \delta u_{0}+\sum_{n=1}^{\infty} r_{x}^{(n)} \partial_{1} \delta \chi_{x}(n) \\
\int_{-h}^{h} \sigma_{z} \delta \varepsilon_{z} d z=Z_{l}{ }^{(0)} \delta w_{0}{ }^{\circ}+\sum_{n=1}^{\infty} z_{t}^{(n)} \delta \varphi^{(n)} \tag{1.5}\\
\int_{-h}^{h} \tau_{x y} \delta \gamma_{x y} d z=S^{(0)} \delta\left(\partial_{1} c_{0}+\partial_{2} u_{0}\right)+\sum_{n=1}^{\infty} S^{(n)} \delta\left(\partial_{1} \chi_{y}^{(n)}+\partial_{2} \chi_{x}^{(n)}\right) \\
\int_{-h}^{h} \tau_{x z} \delta \gamma_{z x} d z=\Gamma_{x}^{(0)} \partial_{1} \delta \omega_{0}{ }^{\circ}+\sum_{n=1}^{\infty}\left(\Gamma_{x}^{(n)} \partial_{1} \delta \varphi^{(n)}-\Gamma_{x}^{(n-1)} \partial_{x} \delta \chi_{x}^{(n)}\right)
\end{gather*}
$$

where the integrals for σ_{y} and $r_{y z}$ are obtained from the integrals for σ_{x} and $r_{z x}$ by corresponding changes in the letters and subscripts.

Generalized coordinates

$$
\begin{gather*}
\chi_{x}^{(n)}=\Delta^{n} u_{0}+\frac{n m}{m-2} \partial_{1} \Delta^{n-1} \hat{\vartheta}_{0}, \quad \chi_{y}^{(n)}=\Delta^{n} v_{0}+\frac{n m}{m-2} \partial_{2} \Delta^{n-1} \hat{\vartheta}_{0} \tag{1.6}\\
\varphi^{(n)}=\Delta^{n} w_{0}-\frac{n m}{m-2} \Delta^{n} \vartheta_{0}
\end{gather*}
$$

corresponding to the generalized forces (1.3) introduced above, have beon inserted into the relationships (1.5). The first two quantities in (1.6) can be treated as projections of the vector $\chi^{(n)}$, located in the middle plane of the plate; let us also note that $\chi_{x}{ }^{(9)}=u_{0}$. $\chi_{y}{ }^{(0)}=v_{0}, \varphi^{(0)}=\omega_{0}{ }^{\prime}$.

Summing all integrals of the type (1.5), then integrating over the plate area Ω and utilizing formulas for the transformation from double integrals over the domain Ω to integrals over the contour L sarrounding the domain Ω, we obtain the following expression for the variation in the tensile potential energy of the plate:

$$
\begin{aligned}
\delta \Pi_{L}= & \oint_{(L)}\left\{\left(v_{x} T_{x}^{(0)}+v_{\nu} s^{(0)}\right) \delta u_{0}+\left(v_{x} s^{(0)}+v_{\nu} T_{y}^{(0)}\right) \delta v_{0}+\left(v_{x} \Gamma_{x}{ }^{(0)}+v_{\nu} \Gamma_{\nu}{ }^{(0)}\right) \delta v_{0}^{0}+\right. \\
& +\sum_{n=1}^{\infty}\left[\left(v_{x} T_{x}{ }^{(n)}+v_{y} s^{(n)}\right) \delta x_{x}^{(n)}+\left(v_{x} s^{(n)}+v_{\nu} T_{\nu}^{(n)}\right) \delta x_{y}^{(n)}+\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+\left(v_{x} \Gamma_{x}^{(n)}+v_{y} \Gamma_{\nu}^{(n)}\right) \delta \varphi^{(n)}\right]\right\} d s-\iint_{(S)}\left\{\left(\partial_{1} \Gamma_{x}^{(0)}+\partial_{x} s^{(0)}\right) \delta u_{0}+\right. \\
& +\left(\partial_{1} S^{(0)}+\partial_{3} T_{\nu}{ }^{(n)}\right) \delta v_{0}+\left(\partial_{2} \Gamma_{2}{ }^{(0)}+\partial_{3} \Gamma_{\nu}{ }^{(0)}-Z_{i}{ }^{(0)}\right) \delta w_{0}{ }^{0}+ \\
& +\sum_{n=1}^{\infty}\left[\left(\partial_{1} T_{x}^{(n)}+\partial_{3} S^{(n)}+\Gamma_{x}^{(n 1)}\right) \delta \chi_{x}^{(n)}+\left(\partial_{1} S^{(n)}+\partial_{3} T_{\nu}{ }^{(n)}+r_{y}{ }^{(n-1)}\right) \delta \chi_{\nu}^{(n)}+\right. \\
& \left.\left.+\left(\partial_{1} \Gamma_{x}^{(n)}+\partial_{y} 1_{y}^{(n)}-Z_{t}^{(n)}\right) \delta \varphi^{(n)}\right\}\right\} d x d y \tag{1.7}
\end{align*}
$$

Let us turn to the evaluation of the work of the external forces acting on the plate endfaces, defined by (0.3); for the tensile strain of the plate we have $\delta u^{+}=\delta u^{-}$. $\delta v^{+}=\delta v^{-}, \delta w^{r}=-\delta w^{-}$; then

$$
\begin{gather*}
\delta A_{1}=\int_{i \Omega)}\left\{\eta_{x} \delta \mu_{i}!-\eta_{y} \delta x_{n}+h_{j}^{2} \delta w_{j}^{\prime}+\right. \\
\left.+\sum_{n=1}^{\infty} \frac{(-1)^{n} h_{n^{2 n}}}{\left(L^{n}\right)!}\left[\left(\eta_{x} \delta \chi_{x}^{(n)}+\eta_{J} \delta \chi_{y}^{(n)}\right)+\frac{h \zeta}{2 n+1} \delta \varphi^{(n)}\right]\right\} d x d y \tag{1.8}
\end{gather*}
$$

For the forces q_{v} acting on the lateral surface, the elementary works is (1.9)

$$
\begin{equation*}
\delta A_{3}=\int_{-h}^{h} d z \oint_{(L)} q_{v} \cdot \delta u d s=\int_{-h}^{h} d z \oint_{(L)}\left(q_{v x} \delta u+q_{v y} \delta v+q_{v z} \delta w\right) d s \tag{1.9}
\end{equation*}
$$

We interchange the order of integration in (1.9) and we express the variations $\delta u, \delta v, \delta v_{s}$ by uaing (0.2). Integrating throagh the plate thicknens, and utilizing the notation of [1] for the atatic and hyper-static characteriatics of the lateral loading $\boldsymbol{q}_{\boldsymbol{y}}$, we obtain

$$
\begin{align*}
& \delta A_{3}=\oint_{(L)}\left[R_{x}{ }^{(0)} \delta u_{0}+R_{y}{ }^{(0)} \delta r_{0}+W^{(0)} \delta u_{0}{ }^{+}+\right. \\
& \left.+\sum_{n=1}^{\infty}\left(R_{x}^{(n)} \delta \chi_{x}^{(n)}+R_{\nu}^{(n)} \delta \chi_{y}^{(n)}+W^{(n)} \delta \varphi^{(n)}\right)\right] d x \tag{1.10}\\
& \left.R_{x}^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{h} q_{v x^{2}}{ }^{2 n} d z, \quad R_{y}^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{h} q_{v y^{2}}^{2 n} d z\right\rfloor \\
& W^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} j_{-n}^{q_{v} z^{2 n+1} d z} \tag{1.11}
\end{align*}
$$

Here $R_{x}{ }^{(0)}, R_{y}{ }^{(0)}$ are projections of the main lateral loading vector on the x and y axes, and $w^{(0)}$ is the bi-force due to the lateral loading.

Applying the minimum potential anergy principle, we have (1.12)

$$
\begin{equation*}
\delta \Pi_{1}-\delta A_{1}-\delta A_{3}=0 \tag{1.12}
\end{equation*}
$$

Substitating (1.7), (1.8), (1.10) into (1.12), we obtain

$$
\begin{align*}
& \oint_{(L)}\left\{\left(v_{x} T_{x}{ }^{(0)}+v_{y} S^{(0)}-R_{x}{ }^{(0)}\right) \delta u_{0}+\left(v_{x} S^{(0)}+v_{\nu} T_{y}{ }^{(0)}-R_{y}{ }^{(0)}\right) \delta v_{0}+\right. \\
& +\left(v_{x} \Gamma_{x}^{(0)}+v_{\nu} \Gamma_{\nu}{ }^{(0)}-W^{(0)}\right) \delta w_{0}^{\prime}+\sum_{n=1}^{\infty}\left[\left(v_{x} T_{x}{ }^{(n)}+v_{y} S^{(n)}-R_{x}{ }^{(n)}\right) \delta \chi_{x}{ }^{(n)}+\right. \\
& \left.\left.+\left(v_{x} S^{(n)}+v_{v} T_{\nu}^{(n)}-R_{\nu}^{(n)}\right) \delta \nu_{y}^{(n)}+\left(v_{\lambda} \Gamma_{x}{ }^{(n)}+v_{\nu} \Gamma_{\nu}{ }^{(n)}-W^{(n)}\right) \delta \varphi^{(n)}\right]\right\} d s- \\
& -\iint_{(\Omega)}\left\{\left(\partial_{1} T_{x}{ }^{(0)}+\partial_{2} S^{(0)}+\eta_{x}\right) \delta u_{0}+\left(\partial_{1} S^{(0)}+\partial_{2} T_{y}{ }^{(0)}+\eta_{y}\right) \delta r_{0}+\right. \\
& +\left(\partial_{1} \Gamma_{x}{ }^{(0)}+\partial_{2} \Gamma_{y}{ }^{(0)}-Z_{t}^{(0)}+h_{\zeta}\right) \delta u_{0}^{\prime}+\sum_{n=1}^{\infty}\left[\left(\partial_{1} T_{x}{ }^{(n)}+\partial_{2} S^{(n)}+\right.\right. \tag{1.13}\\
& +\Gamma_{x}^{(n-1)}+\frac{(-1)^{n} h^{2 n}}{(2 n)!} \eta_{x}\left(\delta \chi_{x}^{(n)}+\left(\partial_{1} S^{(n)}+\partial_{2} T_{\nu}^{(n)}+\Gamma_{y}^{(n-1)}+\right.\right. \\
& \left.\left.\left.+\frac{(-1)^{n} h^{2 n}}{(2 n)!} \eta_{\nu}\right) \delta \%_{y}^{(n)}+\left(\partial_{1} \Gamma_{x}^{(n)}+\partial_{2} \Gamma_{y}^{(n)}-Z_{t}^{(n)}+\frac{(-1)^{n} h^{2 n \mid 1}}{(2 n+1)!} \zeta\right) \delta \varphi{ }^{(n)}\right\rceil\right\} d x d y
\end{align*}
$$

The expressions in the donble integrals in the parentheses before the variations $\delta u_{0}, \delta v_{0}, \delta v_{0}{ }^{\circ}$, vanish, becanse they are the equilibrium equations. Using the connection between the stresses and displacements, as well as (0.2), we obtain after appropriate manipulation

$$
\begin{gather*}
\partial_{1} T_{x}^{(0)}+\partial_{2} S^{(0)}+\eta_{x}=\int_{-h}^{h}\left(\partial_{1} J_{x}+\partial_{2} \tau_{x y}+\frac{\partial \tau_{z x}}{\partial z}\right) d z= \\
=\eta_{x}-2 \mu \sum_{n=0}^{\infty} \frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!}-\Delta^{n}\left[\partial_{1} w_{0}^{\prime}-\Delta u_{0}-(2 n+1) \frac{m \partial_{1} \vartheta_{0}}{m-2}\right]=0 \\
\partial_{1} \Gamma_{x}{ }^{(0)}+\partial_{2} \Gamma_{y}^{(0)}-Z_{t}^{(0)}+\zeta h=\int_{-h}^{h}\left(\partial_{1} \tau_{z x}+\partial_{2} \tau_{y z}+\frac{\partial J_{z}}{\partial z}\right) d z= \tag{1.14}\\
=4 \mu \sum_{n=0}^{\infty} \frac{(-1)^{n} h^{2 n+1}}{(2 n)!} \Delta^{n}\left(\frac{2 n m-1}{n 2-2} \vartheta_{0}-u_{0}{ }^{0}\right)+h \zeta=0
\end{gather*}
$$

The coefficient of the variation δc_{0} is obtained from the first formula in (1.14) by an appropriate substitution of letters and subscripts.

Let us show that the remaining parentheses for the variations $\delta \chi_{x}{ }^{(n)}, \delta \chi_{y}{ }^{(n)}, \delta p^{(n)}$ in the double integral (1.13) also vanish. Indeed, performing analogous calcalations, we

$$
\begin{align*}
& \partial_{1} T_{x}{ }^{(n)}+\partial_{2} S^{(n)}+\Gamma_{x}^{(n-1)}+\frac{(-1)^{n} t^{2 n}}{(2 n)!} \eta_{x}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{n}\left(\partial_{1} \sigma_{x}+\partial_{2} \tau_{x y}+\frac{\partial \tau_{2 x}}{\partial z}\right) z^{2 n} d z== \\
& =\frac{(-1)^{n} h^{2 n}}{(2 n)!}\left\{\eta_{x}-2 \mu \sum_{k=0}^{\infty} \frac{(-1)^{k} h^{2 l+1}}{(2 k+1)!} \Delta^{k}\left[\partial_{1} w_{0}{ }^{\prime}-\Delta u_{0}-(2 k+1) \frac{m \partial_{1} \theta_{0}}{m-2}\right]\right\}=0 \\
& \partial_{1} \Gamma_{x}^{(n)}+\partial_{g} \Gamma_{y}^{(n)}-Z_{l}^{(n)}+\frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!} \zeta=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{n}\left(\partial_{1} \tau_{z x}+\partial_{2} \tau_{y z}+\frac{\partial J_{z}}{\partial z}\right)^{2 n+1} d z= \\
& =\frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!}\left\{4 \mu \sum_{k=0}^{\infty} \frac{(-1)^{k} h^{2 k}}{(2 k)!} \Delta^{k}\left[\frac{2 k m-1}{m-2} \theta_{0}-u_{0}^{\prime}\right]+\zeta\right\}=0 \tag{1.15}
\end{align*}
$$

i.e., we again obtain the equilibrium equations multiplied by powers of h.

The equilibrium equations for a thick plate, expressed in terms of variables connected with the middle plane, were first obtained by Lur'e [3] in 1942. As power series in the plate thickness these equations are the following for the plate extension problem

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!} \Delta^{n}\left[\partial_{1} u_{0}^{\prime}-\Delta u_{0} \cdots(2 n+1) \frac{m \partial_{1} \vartheta_{0}}{m-2}\right]=\frac{\eta_{n}}{2 \mu} \\
& \sum_{n=-0}^{\infty} \frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!} \Delta^{n}\left[\partial_{2} u_{0}^{\prime}-\Delta u_{0}-(2 n+1) \frac{m \partial_{2} \vartheta_{0}}{m-2}\right]=\frac{\eta_{v}}{2 l^{n}} \tag{1.16}\\
& \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} /^{2 n}}{(2 n)!} \Delta^{n^{\prime}}\left[u_{0}^{\prime}-\frac{2 n i n}{m-1} v_{0}\right]=\frac{5}{4 \mu}
\end{align*}
$$

In order for the problem of plate extension to be formulated completely, it is necessary to pose three infinite sets of boundary conditions for the three infinite order differential Eqs. (1.16). This turns out to be realizable since the contour integral (1.13) contains a triple infinity of variations $\delta \%_{c^{(n)}}{ }^{(n)} \delta \chi_{y}{ }^{(n)}, \delta \varphi^{(n)}(n==0,1,2 \ldots)$. Thus, the geometric conditions for a clamped edge in a Cartesian coordinate system are

$$
\begin{equation*}
\chi x^{(n)}==0, \quad \chi_{y}^{(n)}=0, \quad \varphi^{(n)}==0 \quad(n=0,1,2 \ldots) \tag{1.17}
\end{equation*}
$$

where the quantities $\chi_{x}{ }^{(n)}, \chi_{y}{ }^{(n)}, \varphi^{(n)}$ are defined by (1.16).
The geometric conditions (1.17) were thus expressed earlier in [1]. The force boundary conditions

$$
\begin{equation*}
v_{x} T_{x}^{(n)}+v_{v^{\prime}} S^{(n)}=R_{x}^{(n)}, \quad v_{x} S^{(n)}+v_{y} T_{y}^{(n)}=R_{y}^{(n)}, \quad v_{x} \Gamma_{x}^{(n)}+v_{y} \Gamma_{y}^{(n)}=-W^{(n)} \tag{1.18}
\end{equation*}
$$

also follow from the relationships (1.13).
Conditions (1.17) and (1.18) are expressed as projections on Cartesian coordinate axes. It is easy to write boundary conditions with reference to axes connected with the plate outline. To do this, we should use the following relationships

$$
\begin{gathered}
\chi_{y}^{(n)}=v_{x} \chi_{x}^{(n)}+v_{y} \chi_{y}^{(n)}, \quad T_{v}^{(n)}=v_{x}^{2} T_{x}^{(n)}+2 v_{x} v_{u} S^{(n)}+v_{y}^{2} T_{y}^{(n)} \\
\chi_{z}^{(n)}=v_{x} \chi_{y}^{(n)}-v_{y} \chi_{x}^{(n)}, \quad S_{v s}^{(n)}=v_{x} v_{v}\left(T_{y}^{(n)}-T_{x}^{(n)}-i-\left(v_{x}^{2}-v_{y}{ }^{(n)} S^{(n)}\right.\right.
\end{gathered}
$$

$$
\Gamma_{v}^{(n)}=v_{x} \Gamma_{x}{ }^{(n)}+v_{v} \Gamma_{y}^{(n)}, \quad R_{v}^{(n)}:=v_{x} R_{x}^{(n)}+v_{y}^{(n)} R_{y}^{(n)}, \quad R_{s}^{(n)}=v_{x} R_{v}^{(n)}-v_{y} R_{x}^{(n)}
$$

which are the customary transformation formulas for vector and tensor components for a rotation of the coordinate axes system. The contour integral of the variational relationship (1.13) is hence rewritten as
$\oint_{(L)} \sum_{n=0}^{\infty}\left[\left(T_{v}{ }^{(n)}-R_{v}^{(n)}\right) \delta \chi_{v}^{(n)}+\left(S_{v s}^{(n)}-R_{s}^{(n)}\right) \delta \chi_{s}^{(n)}+\left\langle\Gamma_{v}^{(n)}-W^{(n)}\right) \delta \varphi^{(n)}\right] d s$
from which result the geometric conditions for a clamped edge

$$
\begin{equation*}
\chi_{\nu}^{(n)}=0, \quad \chi_{s}^{(n)}=0, \quad \varphi^{(n)}=0 \quad(n=0,1,2, \ldots) \tag{1.21}
\end{equation*}
$$

and the natural force conditions for a free edge

$$
\begin{equation*}
T_{v}^{(n)}=R_{v}^{(n)}, \quad S_{v s}^{(n)}=R_{s}^{(n)}, \quad \Gamma_{v}^{(n)}=W^{(n)} \tag{1.22}
\end{equation*}
$$

2. Bending Problem. The desired functions of the plate bending problem are $u^{\prime}{ }_{0} v^{\prime} v_{0}^{\prime}$ and w_{0}. Evaluating the atrains in terms of the diaplacemente (0.2), we obtain

$$
\begin{gather*}
\varepsilon_{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!} \partial_{1} u_{0}-\frac{m}{4(m-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+3} \Delta^{n}}{(2 n+1)!(2 n+3)} \partial_{1}{ }^{n} \theta_{0}^{\prime} \\
\varepsilon_{z}=-\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!} w_{0}-\frac{m}{4(m-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+2) z^{2 n+1} \Delta^{n}}{(2 n+1)!} \theta_{0^{\prime}} \\
\gamma_{x y}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1} \Delta^{n}}{(2 n+1)!}\left(\partial_{1} v_{0}^{\prime}+\partial_{2} u_{0}^{\prime}\right)-\frac{m}{2(n 2-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+3} \Delta^{n}}{(2 n+1)!(2 n+3)} \partial_{1} \partial_{3} \vartheta_{0}^{\prime} \tag{2.1}\\
\gamma_{z x}==\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n} \Delta^{n}}{(2 n)!}\left(u_{0}^{\prime}+\partial_{1} w_{0}\right)-\frac{\{m}{2(m-1)} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+3} \Delta^{n}}{(2 n+1)!} \partial_{1} \vartheta_{0} 0_{0}^{\prime}
\end{gather*}
$$

The formulas for ε_{ν} and $\gamma_{y z}$ are obtained from those for ε_{x} and $\gamma_{z x}$ by an appropriate change in the letters and subscripts.

Let us introduce static and hyper-static state of stress characteristics of the plate in bending

$$
\begin{gather*}
G_{x}^{(n)}=\frac{(-1)^{n}}{(2 n-1)!} \int_{-h}^{h} \sigma_{x} z^{2 n+1} d z, \quad G_{y}^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{h} \sigma_{y} z^{2 n+1} d z \\
H^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{h} \tau_{x y} z^{2 n+1} d z \tag{2.2}\\
N_{x}^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{n} \tau_{z x} z^{2 n} d z, \quad N_{\nu}^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{n} \tau_{y z} z^{2 n} d z
\end{gather*}
$$

Here $G_{x}{ }^{(0)}, G_{y}{ }^{(0)}, H^{(0)}$ are the bending moments and tarque $N_{x}{ }^{(0)}, N_{v}^{(0)}$ the transverse forces and $G_{x}{ }^{(n)}, G_{\nu}^{(n)}, I^{(n)}, N_{x}^{(n)}$ and $N_{y}^{(n)}$ their hyper-static analogs. Let us also introduce integral distribution characteristics of the stress σ_{z} through the plate thickness

$$
\begin{equation*}
\frac{(-1)^{n+1}}{(2 n+1)!} \int_{-h}^{h} \sigma_{2} z^{2 n+1} d z=Z_{f}^{(n)} \tag{2.3}
\end{equation*}
$$

After integration by parts, and reduction of similar terms in identical variations, the variation in bending potential energy of the plate can be represented as follows:

$$
\begin{aligned}
& \delta \Pi_{2}=\oint_{(L)} \sum_{n=0}^{\infty}\left[\left(v_{x} G_{x}^{(n)}+v_{y} H^{(n)}\right) \delta \psi_{x}^{(n)}+\left(v_{x} H^{(n)}+v_{y} G_{y}^{(n)}\right) \delta \psi_{y}^{(n)}+\right. \\
& \left.+\left(v_{x} N_{x}^{(n)}+v_{y} N_{\nu}^{(n)}\right) \delta \xi^{(n)}\right] d s-\int_{(n)}^{0}\left\{\left(\partial_{1} G_{x}^{(0)}+\partial_{2} H^{(0)}-N_{x}^{(0)}\right) \delta u_{0}^{\prime}+\right. \\
& \quad+\left(\partial_{1} H^{(0)}+\partial_{z} G_{y}^{(0)}-N_{y}^{(0)}\right) \delta v_{0}^{0}+\left(\partial_{1} N_{x}^{(0)}+\partial_{2} N_{y}^{(0)}\right) \delta w_{0} f
\end{aligned}
$$

$$
\begin{align*}
+\sum_{n=1}^{\infty}\left\{\left(\partial_{1} C_{x}^{(n)}\right.\right. & \left.+\partial_{3} H^{(n)}-N_{x}^{(n)}\right) \delta \psi_{x}^{(n)}+\left(\partial_{1} I l^{(n)}+\partial_{2} G_{y}^{(n)}-N_{y}^{(n)}\right) \delta \psi_{y}^{(n)}+ \\
& \left.+\left(\partial_{1} N_{x}(n)+\partial_{3} N_{y}^{(n)}-Z_{j}^{(n-1)}\right) \delta \dot{z}^{(n)} 1\right\} d x d y \tag{2.4}
\end{align*}
$$

The following abbreviationm (generalized coordinates) have been introduced here:

$$
\begin{align*}
& \psi_{x}^{(n)}=\Delta^{n} u_{0}^{\prime}+\frac{n m}{2(m-1)} \partial_{1} \Delta^{n-1} \vartheta_{0}^{\prime} \\
& \psi_{\nu}^{(n)}=\Delta^{n} v_{0}^{\prime}+\frac{n m}{2(m-1)} \partial_{2} \Delta^{n-1} \vartheta_{0} \tag{2.5}\\
& \xi^{(n)}=\Delta^{n} w_{0}+\frac{n m}{2(m-1)} \Delta^{n-1} \vartheta_{0}^{\prime}
\end{align*}
$$

The elementary work of the endface forces (0.3) is the following when expension (0.2) for the displacements is taken into account

$$
\begin{align*}
& \delta A_{z}=\int_{(\Omega)}^{0}\left\{h t_{x} \delta u_{0}^{0}+h t_{y} \delta v_{0}^{\prime}+p \delta u_{0}+\sum_{n=1}^{\infty} \frac{(-1)^{n} h^{2 n}}{(2 n)!} \times\right. \\
& \left.\quad \times\left[p \delta \xi^{(n)}+\frac{h}{2 n+1}\left(t_{x} \delta \psi_{x}^{(n)}+t_{y} \delta \psi_{v}{ }^{(n)}\right)\right]\right\} d x d y \tag{2.6}
\end{align*}
$$

To evaluate the elementary work of forces applied to the lateral surface, we use the static and hyper-static integral characteristics of the lateral loading introduced in [1]:

$$
\begin{gather*}
M_{x}^{(n)}=-\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{h} q_{v y} z^{2 n+1} d z \\
M_{y}{ }^{(n)}=\frac{(-1)^{n}}{(2 n+1)!} \int_{-h}^{n} q_{v x} z^{2 n+1} d z, \quad Q^{(n)}=\frac{(-1)^{n}}{(2 n)!} \int_{-h}^{h} q_{v z^{2}} z^{n n} d z \tag{2.7}
\end{gather*}
$$

Then

$$
\begin{equation*}
\delta A_{4}=\oint_{(L)} \sum_{n=0}^{\infty}\left(M_{y}^{(n)} \delta \psi_{x}^{(n)}-M_{x}^{(n)} \delta \psi_{y}^{(n)}+Q^{(n)} \delta \xi^{(n)}\right) d S \tag{2.3}
\end{equation*}
$$

Substitution of (2.4), (2.6) and (2.8) into the principle of minimum system potential energy

$$
\delta \Pi_{2}-\delta A_{2}-\delta A_{4}=0
$$

yields

$$
\begin{aligned}
& \oint_{(L)} \sum_{n=0}^{\infty} I\left(v_{x} G_{x}^{(n)}+v_{y} H^{(n)}-M_{y}^{(n)}\right) \delta \psi_{x}^{(n)}+\left(v_{x} H^{(n)}+v_{y} G_{y}^{(n)}+M_{x}^{(n)}\right) \delta \psi_{y}^{(n)}+ \\
& \left.+\left(v_{x} N_{x}^{(n)}+v_{y} N_{y}^{(n)}-Q^{(n)}\right) \delta \bar{s}^{(n)}\right] d s-\int_{(\Omega)}^{1}\left\{\left(\partial_{1} C_{x}^{(0)}+\partial_{2} H^{(0)}-N_{x}^{(0)}+\right.\right. \\
& \left.+k t_{x}\right) \delta u_{0}^{0}+\left(\partial_{1} H^{(0)}+\partial_{2} G_{y}^{(0)}-N_{y}^{(0)}+h t_{y}\right) \delta \nu_{0}^{0}+\left(\partial_{1} N_{x}^{(0)}+\partial_{2} N_{y}^{(n)}+p\right) \delta w_{0}+
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{n=1}^{\infty}\left[\left(\partial_{1} G_{x}^{(n)}+\partial_{2} H^{(n)}-N_{x}^{(n)}+\frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!} t_{x}\right) \delta \psi_{x}^{(n)}+\right. \\
& +\left(\partial_{1} H^{(n)}+\partial_{2} G_{y}^{(n)}-N_{y}^{(n)}+\frac{(-1)^{n} h^{2 n+1}}{(2 n+1)!} t_{y}\right) \delta \psi_{y}^{(n)}+ \\
& \left.\left.+\left(\partial_{1} N_{x}{ }^{(n)}+\partial_{2} N_{y}^{(n)}-Z_{j}^{(n)}+\frac{(-1)^{n} h^{2 n}}{(2 n)!} p\right) \delta \xi^{(n)}\right]\right\} d x d y=0 \tag{2.9}
\end{align*}
$$

As in the extension problem, au aualysis of the expressions in parentheses before the variations in the double integral in (2.9) leads to the three equilibrium equations written in the symbolic form of Lur'e [3]; these Eqs. are expressed in series as follows:

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{(-1)^{n} h^{2 n}}{(2 n)!} \Delta^{n}\left[\partial_{1} w_{0}+u_{0}^{*}-1-\frac{n m \partial_{1} \hat{v}_{0}^{\prime}}{(m-1) \Delta}\right]=\frac{t_{x}}{2 \mu} \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n} h^{2 n}}{(2 n)!} \Delta^{n}\left[\partial_{2} w_{0}+v_{0}^{\prime}+\frac{n m \partial_{0} \hat{o}_{0}^{\prime}}{(m-1)} \bar{\Delta}\right]=\frac{t_{u}}{2!} \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n+1} h^{2 n+1}}{(2 n+1)!} \Delta^{n}\left[\Delta u_{0}+\frac{n m+n-1}{2(m-1)} v_{0}^{\prime}\right]=\frac{p}{4!} \tag{2.10}
\end{align*}
$$

The variational relationship (2.9) yields both geometric, and natural (force) boundary conditions in the beading problem of a thick plate. Conditions for rigid clamping of the edge of a thick plate (geometric conditions) are the following in Cartesian coordinates:

$$
\begin{equation*}
\psi_{x^{\prime}}^{(n)}=0, \quad \psi_{1 /}^{(n)}=0, \quad \xi^{(n)}=0 \quad(n=0,1,2, \ldots) \tag{2.11}
\end{equation*}
$$

Natural boundary conditions for a free plate edge (force conditions) are obtained from the requirement that the coelficients of the variations in the generalized coordinates $\left(\delta \psi_{x}^{(n)}, \delta \psi^{\prime \prime}, \delta_{S}^{(n)}\right)$ in the contour integral (2.9) vanish:

$$
\begin{gather*}
v_{x} G_{x}^{(n)}+v_{y} I^{(n)}=M_{y}^{(n)}, \quad v_{x} H^{(n)}, 1-v_{y} G_{y}^{(n)}=-M_{x}^{(n)^{*}:}, \quad v_{x} N_{x}^{(n)} ; v_{y} N_{y}^{(n)}==Q^{(n)} \\
(n=0,1,2, \ldots) \tag{2.14}
\end{gather*}
$$

Conditions (2.11) and (2.12) are expressed in a Cartesian coordinate system. To trans" form to ν, s axes connected to the plate contour L in the contour integral (2.9), we should use the relationships

$$
\begin{align*}
& G_{v}^{(n)}==v_{x}^{2} G_{x}^{(n)}+2 v_{x} v_{u} H^{(n)}+v_{y}^{2} C_{u}^{(n)} \\
& H_{v s}^{(n)}=v_{x} v_{y}\left(C_{y}^{(n)}-C_{x}^{(n)}\right) \mid\left(v_{x}{ }^{2} \cdots v_{y}{ }^{\prime \prime}\right) H^{(n)} \tag{2.13}\\
& N_{v}^{(n)}=v_{x} N_{x}^{(n)}+v_{y} N_{y}^{(n)}, \quad M_{v}^{(n)}=v_{x} M_{y}^{(n)}-v_{y} M_{x}^{(n)}, \quad M_{s}^{(n)}=v_{x} M_{x}^{(n)}+v_{y} M_{y}^{(n)}
\end{align*}
$$

The contour integral (2.9) hence becomes

$$
\oint_{(I)} \sum_{n=0}^{\infty}\left[\left(C_{v}^{(n)}-M_{v}^{(n)}\right) \delta \psi_{v}^{(n)}+\left(I I_{, s}^{(n)}+M_{s}^{(n)}\right) \delta \psi_{s}^{(n)}+\left(N_{v}^{(n)}-Q^{(n)}\right) \delta_{\xi^{(n)}}^{(n)} d s\right.
$$

and the resulting boundary conditions are:
For a rigidly clamped edge

$$
\Psi_{v}^{(n)}=0, \quad \Psi_{s}^{(n)}=1, \quad \xi^{(n)} \quad 11
$$

For a free edge

$$
\begin{equation*}
C_{v}{ }^{(n)}=M_{v}^{(n)}, \quad H_{v s}^{(n)}=-M_{s}^{(n)}, \quad{N_{v}}^{(n)}=Q^{(n)} \tag{2.16}
\end{equation*}
$$

BIBLIOGRAPHY

1. Prokopov, V.K., Application of the aymbolic method to thre derivation of the equation of the theory of plates. PMM, Vol. 29, No. 5, 1965.
2. Lur'e, A.I., On the problem of the equilibrium of a variable thickness plate. Trudy, Leningrad Industr. Inst., No. 6, 1936.
3. Lur'e, A.I., On the theory of thick plates. PMM, Vol. 5, No. 2-3, 1942.
4. Lur'e, A.I., Three-Dimensional Problems of Elasticity Theory. GOSTEKHIZDAT, 1955.
