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One of the auhtors [1] gave a method of obtaining the differential equations and boundary
conditions in problems of tension and bending of plates of constant thickness, on the basis
of utilization of the minimum potential energy principle in combination with a symbolic
writing of the solutions of the elasticity theory equations proposed by Lur's [2 to 4]. The
differential equations and geometric boundary conditions were obtained therein in general
form in a natural way; however, to obtain the force boundary conditions required carrying
out a great deal of awkward computations, which increased sharply in each successive
approximation; the question of obtaining such boundary conditions in general form re-
mained open.

These difficulties are overcome below; integration of the variation in the strain
potential energy of the plate, through the thickness of the plate, and introduction of
multi-moment state of stress characteristics substantially simplified the analysis and
permittet both the geometric and static boundary conditions to be obtained in general
form,

The displacements of points of the plate may be expressed in terms of six functions
of the x,y coordinates which are the displacements u,, vo, wo of points of the middle plane
of the plate and u5, 5, w o the ‘rotations’. Lur’e gave these expressions in symbolic
form by using differentiation operators
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Expanding the symbolic operators in power series we obtain
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Here m is Poisson’s ratio. The expression for v is obtained from u by replacing

b, 4o, 01 and vy, v, d,.
Following Lur’e, it is convenient to separate the problem of deformation of a thick
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Multi-moment theory of equilibrium of thick plates 343

plate into two mdependent problems: the extension of the slab determined by the unknown
functions ug, vy, w5, and the bending of the plate described by the functions u's, v o Wo.

Let p* and p~, respectively, denote the external force vectors per unit area of the
endface planes z = h, z = — h. The projections of these forces on the x, y, z coordinate
axes, which cause extension of the plate, are represented by

Ne=Ppc"+ P Wy=pr"+pP" L=p"—
and those which cause bending of the plate by Formulas
ty=pt— P, t, = Py+ - Py, P= Pz+;‘|" P

The elementary work of all the external forces applied to the plate endfaces is detes-
mined by Expression

84 = S‘S (p’ -8u* - p=-Bu=)dxdy (0.3)
(£
Here ) is the plate plantform area, and ut and u™ are displacement vectors of the

endface planes of the plate, whose projections are evaluated by means of (0.2) with z
replaced therein by h or — A, respectively.

1. Problem of extension of a plate. The variation of the specific strain potential
energy of a plate is determined by Formula

8 = Gxaex '!” 5y58u + 53652 "f Tx ua Ty 'I‘ TuzaTyz ':" Tz.\sz.t (11)

Let us express the strains in terms of the desired functions u,, ve, w', for which we
utilize the known relationships between the strains and the derivatives of the displacements
in addition to (0.2); we then have
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The strains £, and Y zy ate obtained from the strains €, and ¥ zx by & corresponding
change of letters.

To derive the variations in the extension potential energy of a plate, we vary (1.2),
and substitute the result into (1.1), after which we integrate the obtained relationship
through the plate thickness. It is hence convenient to introduce the following static and
hyper-static stress characteristics
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Hore T,(9, T_(9 are tensile, § ) the shear forces, and Tx(") T (n), s(n) (for
n> 1) their hyper-sntic analogs; I, (©), F (® are the bi-forces, I, (") F (n) (forn>1)
the higher order bi-forces.
Let us also introdace a notation for the integrals
" h
(00 o oty = g™ (1.4)

)t )

characterizing the distribution of the stress o, through the plate thickness.
Therefore, by using (1.3), (1.4) and (1. 2), we obtain
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where the integrals foro, and 7, g are obtained from the integrals for o, and r,, by
corresponding changes in the letters and subscripts.
Generalized coordinates

Y™ = A, + 08" 0y, ™M = AT 4- m’"" Za,A"—lﬁo (1.6)

2
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corresponding to the generalized forces (1.3) introduced above, have been inserted into
the relationships (1.5). The first two quantities in (1.6) can be treated as projections of
the vector X™, located in the middle plane of the plate; letus also note that 3. = u,
L (0 ©) — o’
Ay Vo, @ Wy .

Summing all integrals of the type (1.5), then integrating over the plate area {} and
utilizing formulas for the transformation from double integrals over the domain } to integrals
over the contour L surrounding the domain {), we obtain the following expression for the
variation in the tensile potential energy of the plate:
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Let us tum to the evaloation of the work of the external forces acting on the plate
endfaces, defined by (0.3); for the tensile strain of the plate wehave Sut == §u—y
61)"‘ == 61)", aw" == e 6(0“; then
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For the forces q,, acting on the lateral surface, the elementary works is (1.9)

Rk .3
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We interchange the order of integration in {1.9) and we express the variations
Su, Sv, Swy by using (0.2). Integrating through the plate thickness, and utilizing the
notation of | 1] for the static and hyper-static characteristics of the lateral loading Y
we obtain
84, == @ [R < O8ug + Ry(o)évg + WOy L
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Here R_(%, R_(9) gre projections of the main lateral loading vector on the x and y
axes, and w(® is the bi-force due to the lateral loading.
Applying the minimum potential anergy principle, we have (1.12)
6“3 — 6.41 - 6143 == (1-’2)
Substitating (1.7}, (1.8), {1.10) into (1.12), we obtain
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"The expressions in the double integrals in the parentheses before the variations

Su,, Sug, Owy’, vanish, because they are the equilibriom equations. Using the connection

between the stresses and displacements, as well as (0.2), we obtain after appropriate
manipulation
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The coefficient of the variation 51 is obtained from the first formula in (1.14) by an
appropriate substitution of letters and subscripts.

Let us show that the remaining parentheses for the variations §y,(™, 8y, o™
in the double integral (1.13) also vanish. Indeed, performing analogous calculations, we
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i.e., we again obtain the equilibrium equations multiplied by powers of A.

The equilibrium equations for a thick plate, expressed in terms of variables connected
with the middle plane, were first obtained by Lur’efS] in 1942, As power series in the
plate thickness these equations are the bllowing for the plate extension problem
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In order for the problem of plate extension to be formulated completely, it is necessary
to pose three infinite sets of boundary conditions for the three infinite order differential
Egs. (1.16). This tums out to be realizable since the contour integral (1.13) contains a
triple infinity of variations 611‘(") 6Xy("), 6q)(n) (n == 0,1, 2....). Thus, the geometric
conditions for a clamped edge in a Cartesian coordinate system are

‘Xx(n) == 0, Zy('n) =0, ‘P(n) -0 (n=0,1,2..) (1.147)
where the quantities %™, Xu("). @™ are defined by (1.16).

The geometric conditions (1.17) were thus expressed earlier in {1]. The force bound-

ary conditions

Vil ™ 4 vy S o= R, v S oy 70 2 R e T My P 00 Ly ) (4.48)

also follow from the relationships (1.13).

Conditions (1.17) and (1.18) are expressed as projections on Cartesian coordinate axes.
It is easy to write boundary conditions with reference to axes connected with the plate
outline. To do this, we should use the following relationships

2, == vy ™ 4 vyxu("), TN oz v, 2 T ™ o 2vw §OY oy 27 () (1.19)
x.(ﬂ) oe "xxU(n) - 'Vy'Xx(")v S“(ﬂ) = vy, (TU(") _ Tx(")’ A (Ve — v s
F™ =, r™pvrm™  RM™ .-y RrM™ pv®prm, RM™=v.RrM™_vRS™
which are the customary transformation formulas for vector and tensor components for a

rotation of the coordinate axes system. The contour integral of the variational relationship
(1.13) is hence rewritten as
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<§y S UT™ — RO oy, 4 (8,0 — R, ™)y, ™ 4 (I N — W s¢™yds  (1.20)
(Lyn=0

from which result the geometric conditions for a clamped edge
1™=0 y,™=0 ¢M=0 (n==0,1,2,..) (1.21)

and the natural force conditions for a free edge

T,‘") == n\"(ﬂ) , S, n) _ R.("), Pv(") =W (1.22)
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2. Bending Problem. The desired functions of the plate bending problem are u’s, v 5
and w,. Evaloating the strains in terms of the displacements (0.2), we obtain
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The formulas for €, and 7y 4 are obtained from those for €x and 7, by an appropriate
change in the letters and subscripts.

Let us introduce static and hyper-static state of stress characteristics of the plate
in bending
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Here G.,'?, Gv‘o’, H© are the bending moments and torque N, (@, NU(O) the
transverse forces and G.'™, G, g™ N M and N,V their hyper-static analogs.

Let us also introduce integral distribution characteristics of the stress o, through the
plate thickness
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After integration by parts, and reduction of similar terms in identical variations, the
variation in bending potential energy of the plate can be represented as follows:
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The following abbreviations (generalized coordinates) have been introduced here:

nm
\px(n):_: A"uy + _2_(7)_1__—_1)_ o Ay

nm

P, == Ay’ - 2‘(‘"7———1) A1y (2.5)
nnt

i1 4

a( n) __ A% o

The elementary work of the endface forces (0.3) is the following when expension (0.2)
for the displacements is taken intc account
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To evaluate the elementary work of forces applied to the lateral surface, we use the
static and hyper-static integral characteristics of the lateral loading introduced in 1l
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Substitution of (2.4), (2.6) and (2.8) into the principle of minimum system potential
energy
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As in the extension problem, an analysis of the expressions in parentheses before the

variations in the double integral in (2.9) leads to the three equilibrium equations written
in the symbolic form of Lur'e [3]; these Eqs. are expressed in series as follows:
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The variational relationship {2.9) yields both geometric, and natural (force) boundary
conditions in the bending problem of a thick plate. Conditions for rigid clamping of the
edge of a thick plate (geometric conditions) are the following in Cartesian coordinates:

PM=0, $, V=0 EM==0 (=0,1,2..) (2.11)

Natural boundary conditions for & free plate edge (force conditions) are obtained from
ry p 4

the requirement that the coefficients of the variations in the generalized coordinates

({sq;x("), Syu”, 5:1%)  in the contour integral {2.9) vanish:

anx(n) 4 VUH(") e AIU("), vy TICE - v,G, () — __ Jﬂx(”):.‘ vax(,z) - quu(n) — Q(n)
(Il:::() 1,_,.. J) (2.12)

Conditions (2.11) and (2.12) arc expressed in a Cartesian coordinate system. To trans-
form to v ,s axes connected to the plate contour L in the contour integral (2.9), we should
use the relationships
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The contour integral {2.9) hence becomes
0
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and the resulting boundary conditions are:

For a rigidly clamped edge
M0, p, =, AT (215
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For a free edge
¢M=mu"  HY=-m",  NO=q" (2.16)
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