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One of the auhtors [l’l gave a method of obtaining the differential equations and boundary 
conditions in problems of tension and bending of plates of constant thickness, on the basis 
of utilization of the minimum potential energy principle in combination with a symbolic 
wrfting of the solutions of the elasticity theory equations proposed by Lnr’s [2 to 41. The 
differential equations and geometric boundary conditions were obtained therein in general 
form in a natural way; however, to obtain the force boundary conditions required carrying 
out a great deal of awkward computations, which increased sharply in each successive 
approximation; the question of obtaining such boundary conditions in general form re- 
mained open. 

These difficulties are overcome below; integration of the variation in the strain 
potantial energy of the plate, through the thickness of the plate, and introduction of 
multi-moment state of stress characteristics substantially simplified the analysis and 
permittet both the geometric and static boundary conditions to be obtained in general 

form. 
The displacements of points of the plate may be expressed in terms of six functions 

of the x,y coordinatea which are the displacementa uo, uo, we of points of the middle plane 

of the plate and ai, ~6, w; the ‘rotations’. Lur’e gave these expressions in symbolic 

form by using differentiation operators 

sin ZD 
-. 

D 
cos ZD, D’ = A = a,? + &?, al = a 

ax ’ 
(0.f) 

Expanding tha symbolic operators in power series we obtain 

(0.2) 

60 = aluo -f- &$‘o + lro’, 60’ = a&’ + a2110* - Au,, 

ET m is Poi:so;‘s ratio. The expression for v is obtained from u by replacing 

r,u’,, landu,uo, 1. 
Following Lnr’e, it is convenient to separate the problem of deformation of a thick 
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plate into two independent problems: the extension of the slab determined by the unknown 
functions up, uo, w\, and the bending of the plate described by the functions u& v’& wo. 

Let p* and p-, respectively, denote the external force vectors per unit area of the 

endface planes L = h, L = - h. The projections of these forces on the x, y. I coordinate 
axes. which ceuee extension of the plate, are represented by 

tLE = px+ + Px--9 ‘Iv = ptl+ 4- PI;-* gzy2*- pt- 

and those which cause bending of the plate by Formulae 

t, = px+ - Px-, 1, = P”+ -- Pu-l P == PI+;-t- P2- 

The elementary work of all the external forces applied to the plate endfacee is deter- 
mined by Expression 

8A’ zzz (P’ 4u+ 4- P-.GU-)d?Il~ (0.3) 

Here fl is the plate plantform aree, and u+ and u- are displacement vectors of the 

endface planes of the plate, whose projections are evaluated by means of (0.2) with z 
replaced therein by h or -h, respectively. 

1. Problem of extension of P plate. The variation of the specific strain potential 

energy of e plate is determined by Formula 

6X =- G&x -}- +?,, + 3,6F, -; T,Ufi.(xy + T,,r6~u, -+ TsA6~,, 
U.f) 

Let us express the strains in terms of the desired functions a,,, uk w;, for which we 

utilize the known relationships between the strains and the derivatives of the displacements 
in addition to (0.2); we then have 

The strains E and 7 
.Y 

change of letters. 
xy are obtained from the strains E, and yxx by a corresponding 

To derfve the variation8 in the extsneion potential energy of a plate, we vary (1.2), 

and eubetitute the result into (1.1). after which we integrate the obtained relationehip 
through the plate thickness. It is hence convenient to introduce the following static and 
hyper-static stress characteristics 

h 

-h 
(1.3) 
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h 

j Trx X*“+ldx, 
-h 

Herq T,(O), Tyto) ate tensile, S(O) the shear forcem, and T+(“), 7’$“), s(a) (for 

n2 1) their hypapstatic analoga; rz(0), ryco) are the bi-forces, r%(l)). Ryan) (for n2 1) 

the higher order bi-forcea. 
Let na alao introduce a notation for the integrals 

characterizing the dfstrfbntfon 

Therefore, by’uafng (1.3). 
of the atreaa ox throagh the plate thickness. 
(1.4) and (1.2). weobtain 

h al 

(-_)” : 
(%)I J 

c, Pdz = Z( (nJ 

-h 

-=h 

h 
-h 

-h 

:h ?I=1 

where the integrala for CT~ and r are obtained from the integrals for ox and rxx by 
corresponding changes in the le);:ers and sabacripta. 

Ceneralixed coordinates 

@) = Anuo + zi a,A’*-’ i.b,, X$‘) = A’%,,+ 5 &A”-%, 

(1 A) 

(1.6) 

corresponding to the generalized forces (1.3) introduced above, have been inserted into 

the relationships (1.5). The first two quantities in (1.6) can be treated ~projections of 

the vector Xl”), located in the middle plane of the plate; let ua also note that xX(“) - I+, 
x 

Y 
(u) = “,, q)(O) = Q’. 

hmming a11 integrals of the type (1.5). then integrating over the plate area n and 

utilizing fonnulam for the transformation from donble integrals over the domain n to integrals 

over the contour L sarroanding the domain n, we obtain the following expression for the 

variation in the tensile potential energy of the plate: 

6rll = $1 v T 

(” x 
(0) + .“,p)) &r, + (v,S(O) + VvT,(0)) 6uo + (v,l+,(“) + V(&yO)) 6%’ + 

+ 2 [ (vxTx(") + v,S(“‘) 8~~~“) + (v.&“) _I- vJ’,(“)) 6~~‘“’ + 
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+ (a&(“) + d&n) - XI(“)) &I+“] 
I 

dx dy V-7) 

Let us turn to the evalaation of the work of the external forces acting oa tbe plate 
endfeces. defined by (0.3); for the tensile strain of the plate we have &t - iiu-, 
6 I,+ = &r, &w’ - - 6~~; then 

For the forcea q,, acting on tbc Iateral eurfacc, the elementary worka is (1.9) 

We interchange the order of integration in (1.9) and we express the variations 
bu, 6v, 6~s by nsiag (0.2). Integrating throogk the plate thickneso. and utilizing the 
notation of 111 for the static and hyper-etatic characterfatics of the lateral loading Q,,, 
we obtain 

h 

fp) e-w zz _-__ 1, z2”tl& 
(al _1- l)!! ,\ “2 

-h 

(1.10) 

(l.iZ) 

Here R,(O), Ry@) nre projections of the main lateral loading vector on the x and y 
sxea, and W(O) ia the b&force due to the lateral loading. 

Applying tlte minimum potential energy principle, we have (1.12) 

bn,-&4,-6bA,=O 

Suhstitntiog (1.7), (1.8), (1.10) into (1.12). we obtain 

(1.12) 
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91 (v,Tx (‘) + v~S(~) - R,(O)) &Z&J + (vxdo) + VET, - I?$“) 6~1~ + 

( ) 

+ (VJJO) + vyry(0) - II’(‘)) 6~0’ -I- 5 [(v,T,(“) + v,,S(“) - Rx@)) ijxx(‘*) + 
7l=l 

+ (V,s(“) + V&@) - n,(“)) @$) -j- (V&@) + V,I‘,(“) _ W(“)) &p(“) 
,I} 

d,q _ 

(1 .I:<) 

The expressions in the double integrals in the parentheses before the variations 

8rr,, 6v,, 610,‘. vanish, because they are the equilibrium equations. IJsing the connection 

between the stresaes and displacements, as well as (0.2). weobtain after appropriate 

manipulation 

h 

alT,‘o’+ d?S@) f qx = 
U > 

dz = 

-h 

O3 ( -1)71/p t 1 

=%-2P 2 w -I- iv - 
A” a,w,’ - Auu - (2n + 1) ma160_ 

nlo 1 =o 
m-2 

h 

alrx@) + airy(O) - z,(O) -; ch = 

--h 

_= *,L 9 (-lpPtl 
-! 

__-_-- A” 
(al)! ( q;i+ lpo -- wO’ f- ht = 0 

n==-0 
) 

The coefficient of the variation ?JL.~ is obtained from the first formula in (1.14) by an 

appropriate substitution of letters and subscripts. 

Let us show that the remaining parentheses for the variations 6xX(“), Gx~(~), Gq~(u) 

in the double integral (1.13) also vanish. Indeed, performing analogous calculations, we 

have 

-h 

(_i)W”‘1 
=______-- 

(2n + I)! 
2km e. - u”. + 5 E 0 

m-2 1 I (1 .i5) 
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i.e., we again obtain the equilibrium equations multiplied by powers of h. 
The equilibrium equations for a thick plate, ex ressed in terms of variables connected 

with the middle plane, were first obtained by Lur’e P 31 in 1942. As power series in the 

plate thickness these equations are the bllowing for the plate extension problem 

(1.16) 

In order for the problem of plate extension to be formulated completely, it is necessary 

to pose three infinite sets of boundary conditions for the three infinite order differential 
Eqs. (1.16). This tnrus out to be realizable since the contour integral (1.13) contains a 
triple infinity of variations 6x,(“) SX~(~‘), &ptn) (n := 0, 1, 2. . ..). Thus, the geometric 

conditions for a clamped edge in a Cartesian coordinate system are 

Xx(n) :_z 0, &/“) :-. 0, rpcn) =_ 0 (n - 0, 1, 2 . .) (1.17) 

where the quantities Xx(u), xU(“), q(“) are defined by (1.16). 

The geometric conditions (1.17) were thus expressed earlier in [I]. The force bound- 
ary conditions 

Q,(u) + vu,@) ;= R,(n) v&n) -j- vuTv()L) z= #u), 

also follow from the relitionships (1.13). 

vxI’,(“) + VJ”(‘l) =- IV(“) (1.18) 

Conditions (1.17) and (1.18) are expressed as projections on Cartesian coordinate axes. 
It is easy to write boundary conditions with reference to axes connected with the plate 
outline. To do this, we should ase the following relationships 

(1.19) 

r (n) L V&f’) + Y&p) ( 
Y 

R,(“) := v&(n) -t- vu(“) Il,W , R,(“) == vxRv(“) - v,R,(“) 

which are the customary transformation formulas for vector and tensor components for a 

rotation of the coordinate axes system. The contour integral of the variational relationship 

(1.13) is hence rewritten as 

0 
; [(Ty(n) - my hX,(“) 4~. (s,,(u) - H/‘)) hXs(*) + IT,(“) - WC”‘) &$“‘I ds (1.20) 

WI n=o 

from which result the geometric conditions for a clamped edge 

x (u) = 0, Y -&(uj z 0, I$“) z.z 0 (n = 0, i, 2, . . .) 

and the natural force conditions for a free edge 

TV@) z n,(n) , S”, (4 zz p, ry(n) = W(“) 

(1.21) 

(I 22) 
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2. Bendfttg Problem. The desfred functiona of the plate bending problem are u’a, u “a 

and wa. Evslnating the mtrainm in teams of the displacements (0.2). we obtain 

. , 

a,a.d, 

The form&e for E,, and yy, are obtained from those for cx and yzz by an appropriate 

change in the letters and subscripts. 

Let us introduce static and hyper-static state of stress characteristics of the plate 

in bending 

h 

(--I)” c(n) _ -- 
x (2n -j- I)! 

:h 

h 

fi(‘l) = (_-T- . 
(21 $- l)! I Txlt z*n’l dz 

L 

h 

. \ T 9)” dz Ix- ? 

--Yh -h 

h 

s 6 u z2”+’ dz 

--h 

(2.2) 

T zzndz 1/z 

Here G,(O) G CO), ~[(O’ are the bending moments and torque 

transverse force: andU C,(“), GU(“‘, II’“‘, ~~(‘1) 

N,(O), NV(O) the 

and NIICu) their hyper-static analogs. 

Let us also introduce integral distribution characteristics of the atress err through the 
plate thickness 

h 

(2.3) 

After integration by parts, and reduction of similar terms in identical variations, the 

variation in bending potential energy of the plate can be represented as follows: 

(J&z ‘le, b I(v,C,(“) + v/P)) 6$,(“’ + (VJP) + vvcvq gl@) + 
(L) n=o 

+ W’J, 0’) -t vvN,(")) 6~‘“‘1 ds - ’ {(a,c,(O) + a&O), N,(O)) b; + 

( 8 

+ (a&O) + a2cy(0) - K,(O)) 6~~’ -1 (a,N,(O) + a2NY (0) ) awG 1. 
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+ s [(a&p + twf(“) - &(“‘) &pp + (a,zP’ + a&p) - iv,@)) bqp) + 
n-1 

+ (&Q~’ + 8, N,(n) _ zp-‘1) l@)l}dz dy (2-4) 

The following ebbraviationn (generalized coordinates) have been introduced here: 

&f”) r= A’%,,’ $ 
nna 

2(m--1) 
~,A”-‘&J’ 

(2.5) 

The elementary work of the endface forces (0.3) is the following when expension (0.2) 
for the displacements is taken intc account 

(2.6) 

To evaluate the elementary work of forces applied to the lateral surface, we use the 

static and hyper-static integral characteristics of the lateral loading introduced in [II: 

h 

M,(n)= _ f-Q” 
(h + 111 

-h 
h 

j)fp = (- I In 
(2s + l)f I qyXz*+1 dz, Q(*) 

(-4)” h 

-h 

- -(v q,,r’“dz 
I 

(2.7) 
-h 

Then 

(2.3; 

Substitution of (2.4). (2.6) and (2.8) into the principle of minimum system potential 

energy 

yields 

HI, - 6.42 - M, = 0 

03 

92 ” [(v&p _t- V”ZZ(“) - Mu(“)) alp) -1_ (Y*fZ(“) + v’&#“‘) + jvx(n)) fjl#p + 
(L) n=o 

+ (@‘l(n) + vu&,(“) -- Q'"') &“‘] ds - ’ I 

u 

1 &GJq. a&P)_- N,(O) + 

( ) 

Ug’ -i- (&II@) + &C”@) - Iv “(O) + h2,) BfJd + (a,N,@) + &NY(“) + p) bl&J + 
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(2.9) 

As in the extension pmblem, an aualysis of the exfnessions in parentheses before the 

variations in the double integral in (2.9) leads to the three equilibrium equations written 

in the symbolic form of Lur’e 131; these Eqs. are expressed in series as follows: 

(2.10) 

The variational relationship (2.9) yields both geometric, end natural (force) boundary 
conditions in the bending problem of a thick plate. Conditions for rigid clamping of the 
edge of a thich plate (geometric conditions) are the following in Cartesian coordinates: 

gr@) Z 0, IQ1) = 0, 5 (11) -0 (n=0,1,2,...) (‘,.I 1) 

Natural bouudary conditions for s free plate edge (force conditions) are obtained from 

the requirement that the coefficients of the variations in the generalized coordinates 

@liS 
(4, &$“li, ,,(I”) iu the contour iutegral (2.9) vanish: 

YxC,(“) -1. v,ZJ(“) :; nrp, I’_, II(“) i_ QCJ~‘) zzz -_ &cy: YxNr(.l) .,_ @ye) ;= yv” 
(n =1 0, 1, ‘,, . . .) (2.P) 

Conditions (2.11) and (2.12) are expressed in a Cartesian coordinate system. To trans- 
form to u,s axes connected to the plate contour L in the contour integral 12.9). we should 

use the relationships 

snd the resulting boundary conditions are: 

For a rigidly clamped edge 
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For a free edge 

G (d = M w 
” ” ’ 

zzz = - M,(“), N,(“) = Q'"' (2.16) 
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